Order 4 Rectifiable Polyominoes and Polyplets

There are two classes of order 4 rectifiable polyominoes and polyplets - those in which four copies of the figure can be combined to make a square, and those in which four copies can be combined to make a rectangle.

Order 4 Square Rectifiable Polyominoes and Polyplets

A n-polyomino or polyplet for which 4 copies form a square is a rep-4n-tile, as 4 copies make up a square, and n squares make up the polyomino or polyplet.

There are several constraints which we can apply to identify which polyominoes fall into this category.

The rules for polyplets are less strict.

For n=1 there is only one polyomino, the square or monomino.

monomino (IFS)

For n=4 there are 3 polyominos - the T-, L- and O-tetrominoes, and 4 polyplets

T-tetromino    L-tetromino    O-tetromino

tetraplet    tetraplet    tetraplet    tetraplet

For n=9 there are 23 polyominos.

   
       
       
       
   
       
       
   
       
   
       
       
   
       








* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *